旋转编码器目前已经广泛地被运用在各种工业自动化系统中,这类编码器其中一种常见的用途,就是电动机具,其将编码器连接到旋转轴,并向控制系统提供回馈资讯。
编码器的主要用途是量测角度位置与转速,另外还配备像是系统诊断与参数设定等常见功能。图1所显示为一个马达控制讯号链,其利用RS-485收发器与微处理器来连结绝对值编码器(ABS encoder)受控端以及工业伺服驱动器主控端,以建构出交流马达的封闭迴路控制机制。
伺服驱动器与绝对值编码器之间的RS-485通讯链路通常需要高达16MHz的资料传输率,以及低传输延迟的时序。RS-485线路最长可佈线到50公尺,有些情况下,甚至还会延长到150公尺。马达控制编码器对于资料通讯而言是属于极具挑战性的环境,因为电气杂讯以及长线路都会影响RS-485讯号的完整性。
本文以亚德诺半导体(Analog Devices)的50Mbps(25MHz) ADM3065E RS-485收发器以及ADSP-CM40x混合讯号控制处理器为例,探讨编码器可为马达控制应用带来的关键优势。
图1:使用RS-485连结绝对值编码器受控端与伺服驱动器主控端,建构交流马达的封闭迴路控制机制
ADM3065E RS-485收发器是专门设计以用来在如马达控制编码器这类严苛环境中提供稳定运行的能力,另外,其还提供杂讯免疫力以及(IEC) 61000-4-2静电放电(ESD)的耐受力。
RS-485传讯机制具有平衡、差动以及杂讯免疫力等特性。在RS-485双绞线中,系统杂讯会同等地藕合到两条线中。其中一个讯号会与另一个讯号反相,而藕合到RS-485汇流排的电磁场则会相互抵销,如此一来,就会降低整个系统的电磁干扰(EMI)。此外,增强后的ADM3065E 2.1 V驱动电压让通讯达到更高的讯号噪讯比(SNR)。
另外还可运用ADuM141D轻易为ADM3065E增加讯号隔离机制。ADuM141D是一颗採用Analog Devices iCoupler技术的四通道数位隔离器。ADuM141D能在高达150 Mbps的资料传输率下运行,因此适合搭配50Mbps的ADM3065E RS-485收发器(如图2所示)一起运作,运用能量直接注入(DPI)技术量测元件拒斥杂讯的能力,这些杂讯通常会注入到电源供应器或输入针脚。ADuM141D採用的隔离技术已针对DPI IEC 62132-4标准的规范进行测试。ADuM141D在杂讯免疫力方面的性能超越其他类似产品。此外,ADuM141D在频率方面维持极佳效能,反观其他隔离产品在200MHz到700MHz频带区间则会经常出现位元错误。
图2:讯号隔离,传输率达50Mbps的RS-485解决方案简图
编码器和马达驱动器之间暴露,是RS-485接点与缆线上的静电放电是一项常见的系统危险。系统层级的IEC 61800-3标准在EMC免疫力方面,则针对可调速电子功率驱动系统规定了必须具备最低±4kV接触/±8kV空气的IEC 61000-4-2 ESD静电放电防护能力。而ADM3065E的防护性能超越上述规范,其可达到±12kV接触/±12kV空气的IEC 61000-4-2 ESD防护能力。
图3显示IEC 61000-4-2标准规范8kV接触放电电流的波形对比人体模型(HBM)静电放电8kV波形。图4显示两项标准相互指定不同波形与尖峰电流。IEC 61000-4-2 8kV脉衝的峰值电流为30安培,而对应HBM ESD的峰值电流就低了超过5倍,仅为5.33安培。另一项差异则是启动电压突波(spike)的上升时间,相较于HBM ESD波形的10奈秒,IEC 61000-4-2 ESD的上升时间要快上许多,仅为1奈秒。IEC ESD波形的功率远高于HBM ESD波形。HBM ESD标准规定受测设备(EUT)须进行3次正极放电与3次负极放电测试——相较之下,IEC ESD标准则规定须进行10次正极与10次负极放电测试。相较于其他具备不同等级HBM ESD防护能力的RS-485收发器,符合IEC 61000-4-2 ESD规范的ADM3065E则更适合用在各种条件严苛的环境中。
图3:在8kV的IEC 61000-4-2 ESD波形,对比在8kV的HBM ESD波形
编码器可採用许多通讯协定,像是EnDat、BiSS、HIPERFACE、以及Tamagawa。这些编码器通讯协定虽然存在差异,但在实作方面也有许多相似处。这些通讯协定的介面都属于串列式双向管线,并符合RS-422或RS-485电气规格。虽然硬体层面有一些相同点,但每种通讯协定所需要的软体并不相同。每种协定的通讯协定堆叠以及所需的程式码都不一样。本文则专为探讨EnDat 2.2介面在主控端的硬体与软体实作。
延迟可分为两类:第一类是线路的传输延迟,第二则是收发器的传输延迟。光速以及线路的介电常数决定了线路延迟的多寡,通常会介于6ns/m至10ns/m之间。当总延迟超过时脉週期的一半,主控端与受控端之间的通讯就会中断。此时设计者可拥有以下选择:
✔调低资料传输率
✔减量传输
✔在主控端执行延迟补偿
第三个选项所指的是补偿线路延迟与收发器延迟,因此可确保系统能用长线路运行高时脉。延迟补偿的缺点则是系统複杂度会因此提高。当系统不可能进行延迟补偿,或者系统使用较短的线路,那麽採用传输延迟较短的收发器,就会发挥显著的价值。低传输延迟不仅让设计者能採用更高的时脉速度,也不必对系统进行延迟补偿。
主控端的实作包含一个串列埠以及一个通讯协定堆叠。由于编码器通讯协定并不相容于像UART这些其他标准连结埠採用的协定,因此大多数通用型微控制器的週边元件都无法使用。反观FPGA的可程式化逻辑功能,除了可用来将专属的通讯埠建置在硬体上,还能支援诸如延迟补偿等各种先进功能。虽然FPGA颇具弹性且能针对应用量身设计,但它也有许多缺点。相较于处理器,FPGA显得太过于昂贵、太耗电、以及上市时程过于冗长。
本文探讨的EnDat介面是採用Analog Devices的ADSP-CM40x进行实作,这款处理器的应用标的锁定各种马达控制装置。除了如脉衝调变(PWM)计时器、类比至数位转换器(ADC)以及sinc函数滤波器等这类马达控制的週边元件外,ADSP-CM40x还支援高度弹性的串列埠(SPORT)。这些SPORT能模拟许多通讯协定,其中包括像EnDat与BiSS在内的编码器通讯协定。由于ADSP-CM40x拥有如此多元的週边元件,因此除了能执行先进马达控制功能,还能连结其他编码器。如此一来就不必再动用FPGA。